Search results for "Artin L-function"
showing 6 items of 6 documents
Artin groups of spherical type up to isomorphism
2003
AbstractWe prove that two Artin groups of spherical type are isomorphic if and only if their defining Coxeter graphs are the same.
Artin monoids inject in their groups
2001
We prove that the natural homomorphism from an Artin monoid to its associated Artin group is always injective
Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups
1999
It is known that a number of algebraic properties of the braid groups extend to arbitrary finite Coxeter-type Artin groups. Here we show how to extend the results to more general groups that we call Garside groups. Define a Gaussian monoid to be a finitely generated cancellative monoid where the expressions of a given element have bounded lengths, and where left and right lowest common multiples exist. A Garside monoid is a Gaussian monoid in which the left and right lowest common multiples satisfy an additional symmetry condition. A Gaussian group is the group of fractions of a Gaussian monoid, and a Garside group is the group of fractions of a Garside monoid. Braid groups and, more genera…
Parabolic Subgroups of Artin Groups
1997
Abstract Let ( A , Σ) be an Artin system. For X ⊆ Σ, we denote by A X the subgroup of A generated by X . Such a group is called a parabolic subgroup of A . We reprove Van der Lek's theorem: “a parabolic subgroup of an Artin group is an Artin group.” We give an algorithm which decides whether two parabolic subgroups of an Artin group are conjugate. Let A be a finite type Artin group, and let A X be a parabolic subgroup with connected associated Coxeter graph. The quasi-centralizer of A X in A is the set of β in A such that β X β −1 = X . We prove that the commensurator of A X in A is equal to the normalizer of A X in A , and that this group is generated by A X and the quasi-centralizer of…
SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS
2007
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, …
On the Toeplitz algebras of right-angled and finite-type Artin groups
1999
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute and which do not. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. As a consequence the Toeplitz algebras of these groups are universal for covariant isometric representations on Hilbert space, and their representations are faithful if the isometries satisfy a properness condition given by Laca and Raeburn. An application of this to right-angled Artin groups gives a uniqueness theorem …